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Abstract-A new derivation of both unified and scalar additivity theories is given. This derivation concentrates 
on their regions of validity and certain key differences are analyzed in detail. 

1 .  INTRODUCTION 

IN RECENT years there has been much activity in the development of unified theories for 
spectral line broadening (VOSLAMBER,(') BEZZERIDES,") SMITH et ulA3)). Basically these 
theories permit a description of both static and dynamic aspects of a radiator perturber 
interaction ; the unified theories reduce to the familiar impact theory of Baranger and 
Griem in the line center and the "one-perturber" or nearest neighbor static t h e ~ r y ' ~ . ~ )  in 
the line wings. This type of behavior was sought by ANDERSON and TALMAN'~) (see also 
ANDERSON:') and Section 20 of CHEN and TAKEO@)) when they developed their scalar 
additivity theory which reduces to the Lindholm-Foley or scalar impact theory in the 
line center and the statistical theory of Margenau in the wings.@) The essential difference 
between the unified and scalar theories lies in their treatment of overlapping strong col- 
lisions. The unified theories assume that strong collisions do  not overlap in time hence 
the radiator is perturbed by a random sequence of binary collisions. The scalar theories 
d o  not use this approximation and they contain some effects of three-body and higher 
order collision complexes but these results are achieved by assuming that all radiator- 
perturber interactions can be approximated as scalar operators (i.e. spherical tensor 
operators of rank zero). The primary purpose of the present paper is to discuss and com- 
pare the details of these approximations and to discuss the regions of validity for the 
scalar and unified theories. The need to distinguish between these two theories is made 
particularly important by the fact that some recently published "unified theories" are 
actually scalar theories (FuTRELLE,") BOTTCHER(")) and their lack of agreement with 
other unified theories has caused a great deal of confusion. 

In this paper we also provide a new derivation of the unified theory which does not 
employ the elaborate projection operator, BBGKY or Green function techniques found 
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in previous papers. We hope this simpler.derivation will serve to clarify some misgivings 
concerning a crucial factorization in the u'nified theory (BOTTCHER,(") LEE(' ')). In addition 
we compare the unified theory with Fano'srelaxation theory(12) and in particular we show 
that the unified theory is identical to Fano's results if his relaxation operator ( M , ( o ) )  
is expanded to first order in the gas density. 

2. T H E  U N I F I E D  THEORY 

The starting point for most line-shape theories is an expression which equates the line 
shape Z(w) to the Fourier transform of the dipole autocorrelation function 

I ( o )  = ( 1 / ~ c )  Re exp(iwt)C(t) d t  (1) 7 0 

d(t) = ( Ub(t, O ) d U f d t ,  o)), (3) 
where d is the dipole operator for the radiating (or absorbing) particle and U,(t, 0) is the 
time development operator for a system consisting of one radiating particle and N other 
particles which perturb the radiator through the interaction 

W )  = C v(j, t )  (4) 
i 

and where V( j ,  t )  denotes the interaction between the radiator and the jth perturber. The 
states la), Ib), etc. are eigenstates of the unperturbed radiator Hamiltonian H o ,  pa denotes 
the probability of finding the radiator in state la) and ( . - .  ) denotes an average over 
positions and velocities of the N perturbers. Initial correlations of the radiator and per- 
turbers have been excluded by writing the probability as pa,  however, these are not im- 
portant for frequency separations from the allowed line center less than - kT/h where 
Tis the temperature of the system.'l3) For simplicity, Doppler effects have been excluded 
by taking d as the simple dipole  pera at or.''^) Also, for simplicity, we will neglect lower 
state interaction so that U M U ,  becomes simply dU, (this means we only have simple 
matrix elements rather than more complicated tetradic operators) and we need only con- 
sider ( U,(t, 0)). 

We will henceforth assume that the N perturbers are statistically independent and 
may therefore be averaged separately. This is a common approximation (see MARGENAU(' ')) 
however, it neglects two-body and higher order correlations which are of order n2 and 
higher (n being the perturber density). For Stark broadening this approximation can be 
fulfilled by considering a gas of shielded quasi-particles as perturbers, in which the shielding 
accounts for most of the plasma correlations. 

The time development operator U,(t, 0) can be written in the form (h  = 1) 

= Oexp - i  V,(s)ds i i  I 
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with 

VN(s)  3 exp(isH,)I/,(s) exp( - isHo),  (6) 

where we have written UN(t ,  0) in the exponential form by using the Dyson time ordering 
operator 0.‘l6’ It should be emphasized that in  general the iterated integrals of equation 
( 5 )  cannot be reduced to a simple (nonordered) exponential since vN(s) does not commute 
with itself at different times. 

The function UN( t ,  0) may also be written (BARANGER(”) equation 18) in the form 

U,(t, 0) = OIIjU(j; t ,  0), 
f 

(7) 

U ( j ; t , O )  = Bexp {-i / v(j, s) d \ j  , (8) 

where U(j;  t , O )  is the time development operator for the encounter between the radiator 
and the j th perturber. 

The time ordering operator in equations (9, (7) and (8) keeps the collisions in chrono- 
logical order and also entangles various collisions. To show this we consider the fourth 
order (in 8(j,t)) term in the series expansion of U,(t,O). Using equation (4), the fourth 
order term in equation (5) is 

I la 1 2  1 ,  

Various terms occur according to the values of i ,  j ,  k and 1. For example, if i = j = k = I ,  
the average of equation (9) would be 

where ( . . . ) l  denotes a single particle average; we have used the fact that there are N 
different values of i for which i = j = k = 1 and we dropped this particle index in writing 
equation (10) since all particles are equivalent under the average and this index is then 
redundant. 

If the i, j ,  k, 1 etc. refer to two different particles (say 1 and 2), the following possibilities 
arise : 

m ,  t 4 ) m  t 3 ) m  t z l m ,  t l ) ,  

P(2, t4)P(1, t3)v(l, t , ) W  t l ) ,  

Q1, t4)v(lr t 3 ) W ,  t z ) P ( z ,  t l ) ,  

v ( 2 ,  t,)v(l, f3)8(2, t 2 ) v ( 1 7  t i ) ,  

v(1, t4)v(2, t3)8(1, t 2 ) v ( Z 3  t i) ,  

v(1, t4)v(2, t 3 ) 9 ( 2 ,  tz)P(l, t i ) .  



I526 EARL W. SMITH, J. COOPER and LARRY J. ROSZMAN 

If, as is often the case, the average interaction is zero @e. (v(t)) ,  = 0), terms like 
P(2, t4)P(2, t3)8(2, t2)8(1, t l )  etc. will vanish for statistically independent perturbers. For 
the same reason, terms involving three or four different particles will average to zero. 
Thus, the terms of equation (11) are the only ones we need to consider in addition to  the 
term of equation (10). 

Since the time integrals in equation (1 1) are ordered such that t ,  2 t ,  2 t ,  2 t ,  , the 
first term in equation (1 1) corresponds to the case where the radiator collides with particle 
1 before particle 2, the fourth term corresponds to a collision with particle 2 before particle 
1 ; the four remaining terms are overlap terms which are nonzero only if the collisions with 
particles 1 and 2 overlap in time. Since only two particles are involved, we obtain only 
terms of order N 2  from equation (1 1) on performing the average, i.e. 

~(~-1)(P~2,t,~P(2,t3)),<~(1,t,~P(1,t,)),, (12) 

N ( N -  l)((P(L t4)PP, t N ( L  tzP(2,  t 1 ) ) I ) I .  (14) 

It was necessary to retain the particle index in equations (13) and (14) because the single 
particle averages over particles 1 and 2 are entangled. This is not necessary for equation 
(12) and that term could equally well be written ( P ( t , ) P ( t , ) ) , ( ~ ( t , ) ~ ( t , ) ) ,  . We can now 
see that, if strong collisions (those for which an expansion to second order in is in- 
sufficient) are separated in time, the entangled terms (equations 13 and 14) must vanish 
and the unentangled term (equation 12) is the only one which remains. The hypothesis 
that strong collisions do not overlap in time is the impact approximation, the heart of 
both the impact and unified theories. With this approximation there remain only un- 
connected terms (such as ( V V V V ) ( 8 8 )  etc.) and there are no entangled terms due to 
overlapping collisions (of type ( V V V (  V V ) Q  etc.). This disentanglement could not 
easily be achieved without some form of impact hypothesis, and it indicates why the 
unified theory goes over to the usual impact theory of line broadening in the line 
center*(4.17.1 8 )  

It  is not possible to treat the entangled terms in all generality, but the overlap terms of 
equations (13) and (14) are treated in an approximate manner in the scalar theory: in that 
theory the time ordering is simply ignored, the entangled terms of equations (13) and (14) 
are factored into simple products and added to the contribution of equation (12). 

It should be emphasized that the treatment of the entangled terms (i.e. the time 
ordering) is the essential difference between the unified and scalar additivity theories. The 
entangled terms (equations 13 and 14) are rigorously zero when strong collisions do  not 
overlap so the validity criterion for the unified theory is clear ; the validity of the scalar 
theory will be discussed in Section 4. 

We now return to the derivation of the unified theory results. The average of U N ( L  0) 
may be obtained from equation (7) in the form 

I--- 

I-- I -  

t 

= O{ 1 + ( U ( t ,  0)- 1) 1 )” 
= 0 expfl\r( U(t ,  0)- l ) I} .  
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In the second line we set the average of the product of one body operators equal to the 
product of one body averages (statistical independence assumption) and we dropped the 
particle indexj since all particles are equivalent under the average. In the last line we used 
the fact that the number of perturbers N is very large. Next, using the identity (MESSIAH,(19) 
equation XVII.7) 

U(t ,  0)- 1 = - i U(t ,  s)@) ds, (16) i 0 

equation (1 5 )  becomes 
I 

(U,(t, 0)) = 0 exp {-- i 5 N (  U(t ,  s)P(s))~ ds} 
0 

I t  t 

. Co(U(t, t r ) R t r ) > ,  . . . (u(t, t 2 P ( t 2 ) ) , ( ~ ( t ,  t , ) P ( t , ) > ,  . 

In general the effect of the ordering operator 0 is to entangle the various interactions; 
that is, U(t,tr) is defined by the Dyson expansion, equation (9, and the effect of 0 in 
equation (17) is to entangle the interactions in ( U ( t ,  t 2 ) P ( t 2 ) )  with those in ( U ( t ,  t , )P ( t  
etc. By analogy with the fourth order term (equations 12-14), we regard ( U ( t ,  t , )V(t  
and (U( t ,  t2)8(t2)) as referring to two different interactions ; thus, when collisions do  
not overlap, we write 

(U( t , t , )P ( t , )> ' , (U( t ,  t l ) h ) > ,  = t ,  t2P(2 ,  t 2 ) ) , ( ~ ( 1 :  t r t 2 )Q~ , t l ) ) l  

= ( U ( 2 : t , , t 2 ) P ( 2 , t 2 ) ) , ( U ( 1  ; ~ 2 , ~ l ) ~ ~ L ~ l ~ ~ l  (18) 

= ( ~ ( t 3 , t , ) P ( t 2 ) > 1 ( ~ ( t 2 ,  t , ) ~ ( t , ) > , .  

The results of(18) are obtained because whenever v(2, t 2 )  is not equal to zero, 8(1, t ,  = 0 by 
the impact hypothesis, thus U( l ; t , t l )  = U(l;t , t , )U(l; t , , t , )  = U ( l ; t 2 , t l )  since U ( 1 ; t , t 2 )  
= 1 when P(1, t 2 )  = 0. Therefore, if we make the impact approximation by removing the 
overlap of collisions in equation (17) we obtain 

1 f ,  12 
m 

( U , ( t , O ) )  = 1+ r =  1 1 ( - i ) rNr/drr /drr- l  - . - / d f ,  
0 0  0 

' ( U ( t ,  t r ) v ( t r ) )  I ' ' ' (U(r32 t2)P(t2)) I ( U ( t 2  > l ) v ( t  1)) I . (19) 
The integrals in equation (19) are ordered thus keeping the sequence but the entangling 
effect of 0 has been eliminated (a more complete and rigorous derivation of equation (19) 
is given in Appendix A). If we define 

(20) K(t ,  t') 3 N (  U(t ,  t')P(t')) ,, 
equation (19) becomes 

I 1 ,  1 2  
m 

(U,(t,O)) = 1+  ( - iY/dr rsdr r - l  . . .s dt,K(t, t , ) .  . . K O 3 ,  t 2 ) K ( t Z ,  t l )  (21 1 
r =  I 

0 0  0 
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and differentiation with respect to t gives [note K( t ,  t )  = 0 since ( V ( t ) ) ,  = 01 

where 

which is the basic expression used by the unified theory. 

(see Appendix A of SMITH et ~ 1 1 . ' ~ ) )  
To get the Fourier transform of (UN(t ,  0)), we first use the time translation invariance 

to obtain 

G(t, s) = - iN exp(isHo)( 80 - s)U(t - s, O)V(0))l exp( - isH,) (25) 

and equation (22) is then readily solved by Fourier transform to yield the familiar result 

where Y ( m )  is again calculated in terms of a single particle average and, as seen in Section 3, 
it is simply related to Fano's (M( ' ) (m)) .  It has been shown(3) that the unified theory goes 
to the usual impact results in terms of S-matrix elements in the line center (Am -+ 0 limit) 
and the single perturber (nearest neighbor) results in the line wings ; if strong collisions 
are separated in time, this will also according to the following argument be a true rep- 
resentation of the profile in the intermediate region between line center and line wings. 
Since U(t ,  0) = 0 exp{ - i Jb  v(t) dt}, we can say that a collision will be strong (i.e. second 
order theory in P will not be sufficient) when yo v(t) dt > 1. However, 8(t) d t  is at  most 
equal to the integral Jzm V(t) dt (which will be applicable in the line center or S-matrix 
limit) so the condition JZm V(t)dt 31.1 is usually used to establish the so-called strong 
collision radius p o ,  from which one obtains the customary validity condition (pO/u)  
< ( l / n u p ~ n )  ; namely the time between strong collisions must exceed their duration (see 
SMITH et u / . ( ~ ) ( ' ~ ) ) .  Further into the line wings, when a collision cannot be completed in 
the time of interest, strong collisions (defined by Ji V( t )  dt N '1) will only occur for radii 
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smaller than po (since Jb V ( t )  dt 5 J Z m  V ( t )  dt) and the frequency of strong collisions is 
correspondingly smaller. Thus, if this validity criterion is satisjed near line center, it will 
be euen more so in the line wings. We also know that far enough in the line wings only 
very close collisions are important and the nearest neighbor theory always becomes valid. 

3. F A N O ’ S  R E L A X A T I O N  T H E O R Y  

In order to shed more light on the results of the unified theories, we next consider the 
quantum mechanical relaxation theory developed by FANO.(’ 2, Fano’s theory was designed 
to describe the relaxation of a subsystem through its interaction with a thermal bath; this 
theory included long time Markovian relaxation as well as the non-Markovian relaxation 
which occurs over times shorter than a collision duration (or correlation time). Since this 
approach is somewhat different from the unified theories, it is interesting to note that 
when Fano’s relaxation operator ( M , ( u ) )  is approximated to first order in perturber 
density, Fano’s results are identical to the results of the unified theories. To show this, 
we combine Fano’s equations (20), (41) and (42) to obtain 

( M c ( o ) )  = n(M“)(o) )  + . . . , (28) 
where the first order term is given by 

( M ( l ) ( o ) )  = ([l -L1(o-L0)-l]-1L) 

= ((w - Lo)(@- Lo - L,)- 1L,)  

= i((w-LJ 

= i ( (o-Lo)  5 dt exp[-i(w-L,)t]U(t,O)L,) 

dt exp[ - i(o - Lo -L,)t]L,) j 0 

0 

f 

= - i f dt exp[ - i(o - L,) t ] (E, ( t )U( t ,  O)L, > 
0 

and where 

Comparing equation (29) with (27) we see that the results are identical (note however that 
Fano’s results employ tetradics whereas our results in Section 2 employ matrices since 
we neglected lower state interactions). 

In Appendix B we verify the now rather obvious result that Fano’s O(n2)  term, namely 
(ML2)(o) ) ,  is an overlap term which vanishes if strong collisions do not overlap. 

4. T H E  S C A L A R  A D D I T I V I T Y  T H E O R Y  

The scalar additivity theory proposed by ANDERSON‘7’ and ANDERSON and TALMAN‘~) 
(see also Section 20 of CHEN and TAKEO@)) was designed to provide a theory which would 
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cover the entire line profile from the line center to the line wings. This theory uses the 
statistical independence approximation discussed in connection with equation (1 5), but 
the key approximation which sets the scalar theory apart from the unified theory, is the 
neglect of all time ordering in the scalar theory. In the scalar theory, equation (15) is 
approximated by dropping 0 with the result 

(U,(t ,  0))  = exp(N(U(r, 0)-  1>,>, (31) 

U(t, 0) = exp --i P(s) ds . (32) { j  I 
In addition to the approximations stated in equations (31) and (32), the matrix elements 
of ( U , )  are sometimes incorrectly evaluated; we emphasize that equation (31) is to be 
regarded as an operator equality so that the matrix elements of ( U , )  are the matrix 
elements of the exponential not the exponential of the matrix elements of N (  U -  l)l. 

In order to determine the region of validity for equation (31) we will derive a rigorous 
expression which contains (3 1) plus correction terms and then examine the circumstances 
under which the correction terms are negligible. To do this, we start from equation (1 5), viz. 

( U N k  0)) = 0 exp(N(W, 0) - 1) 1 )  

= 0(1+ N (  ~ ( t ,  0) - 

= 1 + N (  u(t, 0)- 

+ ( ~ , / 2 ) ( ~ ( t ,  0)- 1): + . . .} (33) 
+ ( N 2 / 2 ! ) 0 (  ~ ( t ,  0)- I):+ . . . 

and we set this equal to 

(U,(t,O)) = exp{NA, +(N2/2 )Az+  .e.} 
(34) 

= 1+NA1+(N2/2)(A:+A,)+ . - . .  
Equating powers of N we solve for A,, A,, etc. and obtain 

(U,(t,O)) = exp{N(U(t,0)-1),+(N2/2)[(U(t,0)-1):-~(U(t,0)-1):]+ -..}. (35) 

The lead term in this expression gives the result of the scalar additivity theory if we neglect 
time ordering in U(t, 0) [see equation (32)] ; the terms of 0 ( N 2 )  and higher give corrections 
due to overlap effects. 

We first consider the effect of time ordering in the binary collision operator U(t,O). 
The effect of this ordering has been studied by two methods; one method obtains cor- 
rections to the unordered result by means of the Magnus 

t I S  

U(t ,  0) = exp { - i P(s) ds - 5 ds 5 ds'[ V(S),  P(s')] + . . . 
0 0 0  

and the other method solves the set of coupled Schrodinger  equation^(^^-^^) 

(37) 
d 

i z ( a l  u t ,  0)lb) = 2 (4 m l c )  (cl U(t ,  0)lb). 
C 

At the present time, there is no simple validity criterion which can be given for neglecting 
time ordering but thus far its effect on spectral line profiles has been found to be the order 

, 
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of 1&15 per cent or less.'22*23) It should be noted that most unified theory calculations 
have neglected this time ordering but recent developments in the Stark broadening of 
hydrogen lines(2 1*24-26) should permit a detailed study of its effect for these lines. 

We next consider the terms of order N 2  and higher in equation (35) which represent 
corrections due to overlapping collisions (recall that the scalar theory contains some, but 
not all, overlap effects). One case where these terms are negligible is when t -+ 0 in the far 
line wings because they are higher order in t. One often sees the statement that the scalar 
theory is "exact" in the line wings because i t  agrees with the static theory of Margenau to 
all orders in the gas density. In fact one must be very careful about this because some 
O(N2)  correlation effects have been ignored in our derivation of equations (15) and (33)  
and these O ( N 2 )  terms are also ignored by Margenau. These correlations were neglected 
when we assumed that (U,) could be replaced by (U)"  (see equation 15 of this paper 
and equation (1) of MARGENAU);('~) this approximation assumes that the perturbers are 
statistically independent and thereby neglects two-body and higher order correlations 
which are of order n2 and higher. While it is possible to approximate some correlations by 
using shielded interaction potentials (e.g. Debye shielding), such approximations do not 
contain all correlations and the results are certainly not valid to O(n2). A detailed dis- 
cussion of o(n2) correlation terms in the static limit is given by BARANGER and M o z E R ' ~ ~ )  
and by HOOPER.'~~)  Their O(n) term is called h ,  and the O(n2) term is h ,  (see equation (23)  
of BARANGER and MOZER(27) or  equation (21)  of HooPER'~~)); the h ,  term is proportional 
to the two-body correlation function g,. The line wing intensity is proportional to an 
exponential of (nh, +n2h,/2+ . e - )  hence the O(n2) term in the intensity is @:+A,). Com- 
parison with Margenau shows that his results contain only h ,  ; thus we may say that 
Margenau's static theory and the wings of the scalar theory are valid to O(n2) only if two- 
body correlation effects are negligible (i.e. if h,  << h:). It is therefore clear that the scalar 
theory is valid in the far line wings (because the O ( N z )  corrections in equation (35) are 
negligible) but its validity to O(N2)  hinges on the importance of two-body correlation 
effects. These correlations have been found to be very important for Stark broadening by 
ions in plasmas where the long range nature of Coulomb forces enhances such  effect^.'^^.^^) 
For neutral gases, it is not clear what effect these correlations will have on a line profile; 
however, if O ( N 2 )  terms make a significant contribution to the line wing, we would not 
expect to be able to ignore the correlation terms since, when two perturbers are simul- 
taneously perturbing the radiating atom, they will usually be strongly affected by their 
own mutual interaction at the same time. 

Another case where the correction terms in equation ( 3 5 )  vanish is for isolated non- 
degenerate energy levels (by "isolated" we mean that the frequency spacing between 
spectral lines arising from two adjacent energy levels is much greater than their line 
widths). For such systems the interaction operator V ( t )  is a diagonal matrix on H ,  eigen- 
states (off diagonal "quenching" terms would be negligible). Consequently U(t ,  0) would 
be represented by a diagonal matrix, the commutators in equation (36)  would vanish, all 
time ordering would vanish, and the scalar theory would be exact. This model is extremely 
popular because it results in exactly soluble equations and it is often used to test other 
theories because of these exact solutions.'29) We must therefore emphasize that these 
exact solutions apply only to a mathematical model which might not represent any 
physically realizable system;'30) for example, almost all atoms and molecules have ( 2 j +  1) 
degenerate m states and may not be represented by diagonal V matrices (an exception 
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arises in large magnetic fields). In an attempt to use the scalar model one often replaces 
the matrix (jmjVl j m ’ )  by the scalar V( j )  = & ( jml  Vljm>/(2j+ 1) (or with a I/-effective 
replacing V ) .  In fact, it should be emphasized that this replacement of V by a scalar V- 
effective may be achieved by evaluating the time development operator (or S-matrix) in 
the adiabatic approximation (see CALLOWAY and BAUER‘3 ‘I). Thus, the scalar additivity 
and adiabatic approximations are closely linked (and are essentially exact if one is dealing 
with nondegenerate s-states). This so-called “Lindholm-Foley theory” (see CHEN and 
TAKEO@) Section II.B.2) results in an S-matrix (or U ( t )  operator) whose “matrix elements” 
are completely unlike those of the true S-matrix resulting from (jml VI jm‘) .  STACEY and 
 COOPER'^^) have shown that this difference may be unimportant for some line broadening 
problems; on the other hand, LEWIS and c o - ~ o r k e r s ( ~ ~ , ~ ~ )  have shown that it is inadequate 
for an analysis of some cross-section and line shape data. A model similar to the Lindholm- 
Foley theory has been proposed by BRUECKNER.‘35) He allows the interaction potentials 
to commute to obtain an S-matrix essentially as an unordered exponential 

S = exp { - i  { Vd,). 
-02  

He is careful, however, to evaluate fully the matrix elements of the exponential, rather 
than the Lindholm-Foley procedure which essentially just replaces the exponent with an 
averaged interaction. Under some circumstances, Brueckner shows that his results are 
close to Lindholm-Foley results. At the present time one can only say that this approx- 
imation is very dangerous since it obviously produces an incorrect S-matrix and the extent 
of its validity has not been fully investigated as yet. 

One often sees the statement that the scalar theory is valid in the line center because 
it reduces to the results of the adiabatic impact theory. Actually this is true only for the 
nondegenerate or  Lindholm-Foley model discussed above (sometimes called the scalar 
impact theory). The scalar theory definitely does not reduce to the modern impact theories 
of Baranger and Griem both because it contains O(n2) contributions to the half width which 
are not present in their theories and because, if the Lindholm-Foley approximation is 
used, the scalar theory gives only an approximation (often adiabatic) to the S-matrix ele- 
ments required by the full impact theory. In the case where the Lindholm-Foley method 
is used, the validity of the scalar theory hangs on the validity of that approximation. If 
the Lindholm-Foley method is not used, the validity of the scalar theory is determined 
by the relative importance of the O(n2) terms which it retains. To show this we first note 
that the impact and unified theories are valid in the line center when strong collisions do 
not overlap. We also know that the “relaxation” operator which gives rise to the half 
width (called Y(o) in equation 26), by GRIEM‘36’ and 2f by BARANCER‘4)) is linear in 
gas density. From the discussion of equations ( 1 2 H 1 4 )  it is clear that the scalar theory 
contains O(n2) terms which are not present in the impact and unified theories; from the 
previous discussion it is also clear that the scalar theory neglects some O(n2)  terms. If the 
O(n2)  terms retained are small, the scalar theory will be valid in line center (e.g. for the 
nondegenerate model they vanish identically) ; however, if they are large terms which 
should have been cancelled out by the neglected O(n2)  terms, the scalar theory could be 
in error in the line center. An easy way to check this would be to look for an n 2  dependence 
in the half width in a pressure region where the impact approximation is known to be 

i 
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valid. This would not verify the scalar theory in the high pressure regime but it would 
certainly clarify the role of the O(n2) terms. 

5.  CONCLUSIONS 

From the above discussions we see that the Unified Theory is valid throughout the 
entire line profile when strong collisions do not overlap in time. (Actually, for Stark 
broadening, where the interaction is long range, the cumulative effects of weak collisions 
must be considered;'39) for electron perturbers there is no problem, but for ion perturbers 
the validity regime may be slightly more restricted). On the other hand, by ignoring 
time ordering the scalar additivity theories are seen to include to some extent the effects 
of overlap of collisions, however, they do not give correct S-matrices (but some adiabatic 
approximation) in the impact limit, nor is their validity simply ascertained. Experiments 
at pressures where O(n2) terms are important will help to clarify the approximations used 
in these theories. 

A P P E N D I X  A 
DERIVATION O F  U N I F I E D  T H E O R Y  

Using the approximation that the perturbers are statistically independent, the average 

( F )  = [.. . [dx, dv, . . . dx, dv,P(x,)W(v,). . . P(xN)W(vN)F(xlvl . . . x,v,), (A-I) 

where P and Ware the single particle position and velocity distribution functions. W can 
be taken to be the Maxwellian velocity distribution and, with spatial homogeneity, P is 
taken to be 

where n is the perturber density and V is the volume of the system. We are interested in 
the limit N -+ 03, V -+ 03 in such a way that n = N / V  remains fixed. 

The average of the time development operator for the N-body system can be written 
in the general form (see equations 4 and 5) 

of some arbitrary function F takes the form 

P(x) = 1/V = nJN,  (A-2) 

I 1.. I ,  

Thus the rth term of the sum in equation (A-3) consists of a product of r interactions 
v(j, t )  in exactly the same way that the fourth order term in equation (9) consists of four 
interactions. In examining the fourth order term we had to consider all the possible ways 
in which the N perturbers could occur in the various interactions. In addition, with the 
impact hypothesis of the unified theory we are only interested in combinations that have 
no overlap, i.e. disentangled averages. We saw, for the fourth order term, that there were 
N terms in which all perturbers were the same in the single particle average, and that 
there were N(N - 1) terms with two ordered single particle averages as given in equation 
(12) (we get N ( N  - 1) rather than N ( N  - 1)/2, which is the number of ways of choosing two 
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perturbers, since the perturber indexj is irrelevant under average ; that is, (P(2, t4)P(2, t 3 ) )  
-(v(l, t2)V(1, t l ) ) ,  is the same as (P(1, t4)P(1, t 3 ) ) , ( 8 ( 2 ,  t,)8(2, t l ) ) l ) .  

those combinations for which the collisions do not overlap in time we have 
These ideas may be simply extended to the rth term of equation (A-3) counting only 

iliz...jv 

r 

C 
ml.m2= 1 
m l + m Z = r  

( P ( t m l  + m z + m J  . ' *'('m1 + m z  + 

= N < v ( t r ) .  . . P(t,)>,+ N ( N -  1) ( P ( t m 1  + m J .  . . v ( t m l +  I ) ) l ( P ( t m l ) .  . . '(tl)), 

r 

C 
m l  +mz + m3 = r  

- + N ( N -  1)(N -2) ( V ( t m l  +mz) . . . 
mlrm2,m3 = 1 

. ~ ( t m l + , ) > 1 ( P ( t m l ) -  R t 1 ) ) l  +etc. (A-4) 

The first term in equation (A-4), of order N, represents the case where all the V refer to 
the same particle (i.e. the case wherej, = j 2  = . . . = j,: cf. equation lo), the second term, 
of order N ( N  - l), represents the two particle case ( j ,  = j 2  = . . . = j,, and j,, + = * 

so on. The indices mi denote the number of particles in each group ; for example, in the case 
r = 4, the two particle term is (V)(VVV)+(VV)(VV)+(VVV)(V) and the sum 
over m , , m 2  produces these three terms. The restriction m l + m 2  = r ties m, and m2 to- 
gether so that, while there are m1 particles under the first average and m2 under the second, 
the total number of P operators is always r. Equation (A-4) may be written in the general 
form 

- - j,,+,, where m ,  + m ,  = r andj ,  #jml+l)r the third term represents three particles and 

q = 1  ntl.mZ"m - 1  
p m ;  = 4- 

. '(tml+ 1 ) ) 1 ( v ( t m , ) . . *  v(t1)>1, (A-5) 

where we have used fact that N + 00 to write Nq. Notice that in the rth term there are r 
single particle averages, so each average is multiplied by a factor N ,  this finally leads to a 
result proportional to n since P(x)  = n/N (from equation A-2). Substituting back into 
equation (A-3) gives 

(U"(t, 0))  = 1 

+ f (-iY Nq j d t r / d t r -  , . . -/dtl(  v(tr). .) l . .  .( ~ ( t m l ) . .  . v(t,)) 1. (A-6) 
0 

r = l  q =  1 ml.mz...mq= 1 
p m , = r )  0 0 

t 

1 
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To proceed further, we work out the useful identity 
t S m  s ds, 1 ds,- . . .I ds, ( P(s,). . . P(sl)) f(sl) 
0 0  0 

I I r 

where 

1535 

(A-7) 

We inverted the order of integration in equations (A-7) and (A-8) by repeated application 
of the Dirichlet integral theorem‘, 7, 

jdXjdYf(X,Y) = j d Y  jdXf(X,Y). 04-91 

The identity expressed in equation (A-7) holds for any function f and any number of 
integrals m Applying this identity to the first m, integrals in equation (A-6) gives 

application to the next m2 integrals yields 

(A-1 1) 

0 0 



1536 EARL W. SMITH, J. COOPER and LARRY J. ROSZMAN 

and, in general, 

We next use 

(A-12) 

(A-13) 

(A-14) 

Equation (A-13) is just equation (A-9) in summation form and (A-14) may be obtained 
from ABRAMOWITZ and STECUN(~*) (Section 24.1.2) (noting that Fmr..  . F,, is not invariant 
under permutation). Applying these identities to equation (A-12) gives 

(UN( t ,O) )  = 1 +  2 N q / d t q j . - - j d t l  
t 1, $ 2  00 m 

(-i)'"qFmq(t,tq) E... m l =  2 1 (-i)m14,1(t2,t1) 
mq= 1 

0 0 0  
q =  1 

t rq 12 (A- 15) 

= 1+ (-i)qI dt, I . . . I d f ' K ( t  , t q ) . . .  K ( t s , t 2 ) K ( t z , t l ) ,  
q =  1 

where we have used 

0 0 0  

00 m 

(- i)"F,(t, sl) = 1 (- i)" I d s ,  I . . . I ds2( r(sm) * .  . r(s1)>, 
m =  1 m= 1 (A-16) s1 81 SI 

= - i( U(t,  sl)V(s,)) = - iK(t, sl)/N, 

and the definition of K(t ,  t') given in equation (20). Comparing equation (A-15) with (21) 
we see that these equations are identical. 

A P P E N D I X  B 
F A N O ' S  S E C O N D  O R D E R  T E R M  

Averaging Fano's equation (42a) gives for ( i  = 1) 
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Similarly,  e q u a t i o n  (42b) gives (for i, j = 1,2) 

1 
(M'2')+2(M'1)) =( n = O  f (L1+LZ)  {=(L1 + L,)} ')  

=( n = O  5 p = o  ~ 1 { & . ) " { ~ " }  

+ L,  {A L z }  0- Lo 'I)+ c, 

n - p  1 

I531 

(B-2) 

where C denotes a sum of entangled terms of fourth and higher order in the interaction; 
for example, 

1 1 L, 4- L1-L2-L,- Lz-L1- 
1 1 

0-Lo 0-Lo ) ( 0 - L o  0-Lo 0-Lo 

L1-L2- 1 Ll) 
1 

0-Lo 0-Lo 

L1-----L1- 1 L+. ( 0 - L o  0-Lo 0-Lo 
1 + L2- (B-3) 

Since 1 and 2 are dummy indices under an average, we have, averaging 1 and 2 inde- 
pendently, 

Using the following identity for an iterated double sum, 
m n  m m  c c f h P )  = c c f @ + % P ) ,  

n = O  p = o  p = o  q = o  

we have 
w w  

(M'2')+2(M(1') = 2 p = O q = O  1 1 (Ll{LLl}p)({-&L2}q)+C 0-Lo 

= 2 ( ~ " ) ) ( 1 +  f -Ll 1 {'L1)3+c q=oO-Lo 0 - L o  

or 

1 
(M'Z') = 2(M(1))- (M'l)) + c. 

0- Lo (B-7) 
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Following Fano's equation (41), we may write 

, . .;.. *. 
r .  . .  

nz 
( M , )  = n ( M ~ ' ) ) + T < M ~ 2 ) ) +  .. 

Using Fano's equation (20) then gives 

= .C 

= entangled terms of fourth and higher order. 

03-91 
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